

STRUCTURAL CALCULATIONS

(Permit Supplement)
HEADRICK RESIDENCE
8822 SE $62^{\text {nd }}$ Street
Mercer Island, WA 98040

Quantum Job Number: 21271.01

Prepared for:
NED NELSON, ARCHITECT
$102192^{\text {nd }}$ Avenue NE
Bellevue, Washington 98004

Prepared by:
QUANTUM CONSULTING ENGINEERS
1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

Project Title:
Engineer:
Project ID:
Project Descr:

DESCRIPTION: L2J3 Rev 2 - Deck Joist

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2015

Material Properties

Analysis Method	Allowable Stress Design	$\mathrm{Fb}+$	1,600.0 psi	E : Modulus of Elasticity	
Load Combination	IBC 2015	Fb -	1,600.0 psi	Ebend- xx	1,600.0ksi
		Fc-Prll	1,100.0 psi	Eminbend - xx	580.0 ksi
Wood Species	Douglas Fir - Larch	Fc - Perp	625.0 psi		
Wood Grade	Select structural	Fv	170.0 psi		
		Ft	950.0 psi	Density	31.20 pcf
Beam Bracing	Beam is Fully Braced aga				

$\mathrm{D}(0.042) \mathrm{l}$ L (0.21)			
	6x8		
	Span $=13.50 \mathrm{ft}$		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load : $\mathrm{D}=0.0120, \mathrm{~L}=0.060 \mathrm{ksf}$, Tributary Width $=3.50 \mathrm{ft}$, (Deck)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio =	0.865: 1	Maximum Shear Stress Ratio		$=$	0.344 : 1
Section used for this span	6x8	Section used for this span			6×8
fb : Actual	1,383.44 psi	fv: Actual		=	58.44 psi
F'b	1,600.00 psi		F'v	=	170.00 psi
Load Combination	+D+L	Load Combination			+D+L
Location of maximum on span	6.750 ft	Location of maximum on span		$=$	0.000 ft
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs		=	Span \# 1
Maximum Deflection					
Max Downward Transient Deflection	0.510 in Ratio $=$	$317>=240$	Span: 1 : L Only		
Max Upward Transient Deflection	0 in Ratio =	$0<240$	n/a		
Max Downward Total Deflection	0.634 in Ratio $=$	$255>=180$	Span: 1 : +D+L		
Max Upward Total Deflection	0 in Ratio =	$0<180$	n/a		

Maximum Forces \& Stresses for Load Combinations

Max Stress Ratios														Shear Values		
Segment Length Span \#	M	V	$C D$	CM		CLx	C_{F}	Cfu	C	C_{r}	M	fb	F'b	V	fv	F'v
D Only													0.0	0.00	0.0	0.0
Length $=13.451 \mathrm{ft} \mathbf{1}$	0.188	0.075	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	1.16	270.1	1,440.0	0.31	11.4	153.0
Length $=0.04927 \mathrm{ft} 1$	0.003	0.075	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.02	3.9	1,440.0	0.31	11.4	153.0
+D+L				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length $=13.451 \mathrm{ft} 1$	0.865	0.344	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.94	1,383.4	1,600.0	1.61	58.4	170.0
Length $=0.04927 \mathrm{ft} 1$	0.013	0.344	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.09	20.1	1,600.0	1.61	58.4	170.0
+D+0.750L				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length $=13.451 \mathrm{ft} 1$	0.553	0.220	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.75	1,105.1	2,000.0	1.28	46.7	212.5
Length $=0.04927 \mathrm{ft} 1$	0.008	0.220	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.07	16.1	2,000.0	1.28	46.7	212.5
+0.60D				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.

Project Title:
Engineer:
Project ID:
Project Descr:
Wood Beam

Project File: Headrick Rev 2.ec6

LIC\# : KW-06016450, Build:20.23.04.05
QUANTUM CONSULTING ENGINEERS
(c) ENERCALC INC 1983-202

DESCRIPTION: L2J3 Rev 2 - Deck Joist
Maximum Forces \& Stresses for Load Combinations

Overall Maximum Deflections

| Load Combination | Span | Max. "-" Defl Location in Span | Load Combination | Max. "+" Defl Location in Span |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $+\mathrm{D}+\mathrm{L}$ | 1 | 0.6340 | 6.799 | 0.0000 |
| Vertical Reactions | | | Support notation : Far left is \#1 | 0.000 |
| Load Combination | | Support 1 | Support 2 | |
| Max Upward from all Load Conditions | | 1.761 | 1.761 | |
| Max Upward from Load Combinations | 1.761 | 1.761 | | |
| Max Upward from Load Cases | 1.418 | 1.418 | | |
| D Only | | 0.344 | 0.344 | |
| +D+L | 1.761 | 1.761 | | |
| +D+0.750L | 1.407 | 1.407 | | |
| +0.60D | 0.206 | 0.206 | | |
| L Only | | 1.418 | 1.418 | |

| | JOB SUMMARY REPORT |
| :--- | :--- | :--- | :--- | :--- |
| 21271.01 - Headrick Residence | |

ForteWEB Software Operator	Job Notes
Maxwell Skotheim	
Quantum Consulting Engineers	
(206) $957-3906$	
MSkotheim@quantumce.com	

Second Level, L2B3. - Deck Rev 2

1 piece(s) 6 3/4" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$5585 @ 22^{\prime} 2^{\prime \prime}$	$6581\left(1.50{ }^{\prime \prime}\right)$	Passed (85\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (Ibs)	$4947 @ 20^{\prime} 11^{\prime \prime}$	17888	Passed (28\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Member Type : Flush Beam					
Pos Moment (Ft-lbs)	$30542 @ 11^{\prime} 23 / 4^{\prime \prime}$	47967	Passed (64\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.611 @ 11^{\prime} 23 / 4^{\prime \prime}$	0.729	Passed (L/430)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.770 @ 11^{\prime} 23 / 4^{\prime \prime}$	1.094	Passed (L/341)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 0.95 that was calculated using length $L=21^{\prime} 101 / 2^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Factored	
1 - Stud wall - HF	5.00"	3.25"	2.07"	1182	4548	5730	$13 / 4$ " Rim Board
2 - Hanger on 15" HF beam	2.00"	Hanger ${ }^{1}$	1.50 "	1169	4497	5666	See note ${ }^{1}$

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$22^{\prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$22^{\prime} \mathrm{o} / \mathrm{c}$	

\bullet-Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HGUS6.88/12	$4.00 "$	N/A	$56-10 \mathrm{~d}$	$20-10 \mathrm{~d}$	

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	$13 / 4^{\prime \prime}$ to $22^{\prime} 2 "$	$\mathrm{~N} / \mathrm{A}$	24.6	--	
1 - Uniform (PSF)	0 to $22^{\prime} 4^{\prime \prime}$ (Front)	$6^{\prime} 9^{\prime \prime}$	12.0	60.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Maxwell Skotheim
Quantum Consulting Engineers
(206) 957-3906

MSkotheim@quantumce.com

Weyerhaeuser

